organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4,6-O-Benzylidene-1-O-methyl-2,3deoxy-a-D-glucopyranose-2,3-diyl 1,2-phenylene orthocarbonate

Richard Betz and Peter Klüfers*

Ludwig-Maximilians-Universität, Department Chemie und Biochemie, Butenandtstrasse 5-13 (Haus D), 81377 München, Germany Correspondence e-mail: kluef@cup.uni-muenchen.de

Received 4 September 2007; accepted 14 September 2007

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.004 Å; R factor = 0.043; wR factor = 0.101; data-to-parameter ratio = 8.9.

The title compound, $C_{21}H_{20}O_8$, is the mixed orthocarbonic acid ester of the alcohol components benzene-1,2-diol and 4,6-O-benzylidene-1-O-methyl- α -D-glucopyranoside. The compound represents the first example of a structurally characterized carbohydrate ester of orthocarbonic acid. Both oxacyclic six-membered rings in the structure adopt a chair conformation. The puckered five-membered ring at the spiro centre is present in a twist conformation. No special interactions are observed in the molecular packing.

Related literature

The compound was prepared according to the procedure described by Mues & Buysch (1990). A comparable spirocyclic orthocarbonate has been described recently (Betz & Klüfers, 2007).

Experimental

Crystal data

C21H20O8 $V = 1827.53 (11) \text{ Å}^3$ $M_r = 400.37$ Z = 4Monoclinic, C2 Mo $K\alpha$ radiation a = 27.8221 (12) Å $\mu = 0.11 \text{ mm}^{-1}$ b = 5.1082 (1) Å T = 200 (2) Kc = 13.0090 (5) Å $\beta = 98.710(2)^{\circ}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) $T_{\min} = 0.985, T_{\max} = 0.996$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.101$ S = 1.072340 reflections 264 parameters

 $0.13 \times 0.07 \times 0.04 \text{ mm}$

17337 measured reflections 2340 independent reflections 1770 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.056$

1 restraint Only H-atom displacement parameters refined $\Delta \rho_{\text{max}} = 0.17 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$

Data collection: COLLECT (Nonius, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997): program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

The authors thank Sandra Albrecht and Anna Zangl for professional support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2136).

References

- Betz, R. & Klüfers, P. (2007). Acta Cryst. E63, 03933.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Mues, P. & Buysch, H.-J. (1990). Synthesis, pp. 249-252.
- Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o4132 [doi:10.1107/S1600536807045266]

4,6-O-Benzylidene-1-O-methyl-2,3-deoxy-Q-D-glucopyranose-2,3-diyl 1,2-phenylene orthocarbonate

R. Betz and P. Klüfers

Comment

The spirocyclic orthocarbonate derived from benzene-1,2-diol and 4,6-*O*-benzylidene-1-*O*-methyl α -*D*-glucopyranoside has been prepared to obtain NMR data and structural details for comparison with analogous silicon compounds. In the centre of the molecular structure of (I) a carbon atom is bonded to a benzene-1,2-dioxy group and to the vicinal, *trans*-configured, 2,3-dioxy function derived from 4,6-*O*-benzylated methyl α -*D*-glucopyranoside. Both oxacyclic six-membered rings in the structure adopt a chair conformation. The puckered five-membered ring at the spiro centre is present in a twist conformation.

The molecular packing shows clustering of the aromatic groups about the twofold axes parallel to b. While two of these rings stem from the carbohydrate's protecting group, the other two are provided by phenylene residues.

Experimental

The compound was obtained upon reaction of equimolar amounts of 2,2-dichlorobenzo[1.3]dioxole and 4,6-*O*-benzylidenemethyl- α -*D*-glucopyranoside in the presence of pyridine in dry dichloromethane. Crystals suitable for X-ray analysis were obtained after aqueous workup and subsequent recrystallization of the crude reaction product from hot ethyl acetate.

Refinement

All H atoms were located in a difference map and refined as riding on their parent atoms with C—H = 0.95-1.00 Å. One common isotropic displacement parameter for all H atoms was refined to $U_{iso}(H) = 0.046$ (2).

Due to the absence of significant anomalous scattering, Friedel opposites (1736 pairs) have been merged. The absolute configuration is assigned from the carbohydrate starting material.

Figures

Fig. 1. The molecular structure of (I), with atom labels and anisotropic displacement ellipsoids (drawn at the 50% probability level) for non-H atoms.

Fig. 2. The packing of (I), viewed along [010].

4,6-O-Benzylidene-1-O-methyl-2,3-deoxy-α-D-glucopyranos-2,3-diyl- 1',2'-phenylene orthocarbonate

Crystal data	
$C_{21}H_{20}O_8$	$F_{000} = 840$
$M_r = 400.37$	$D_{\rm x} = 1.455 {\rm ~Mg~m}^{-3}$
Monoclinic, C2	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: C 2y	Cell parameters from 11294 reflections
a = 27.8221 (12) Å	$\theta = 3.1 - 27.5^{\circ}$
b = 5.1082 (1) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 13.0090 (5) Å	T = 200 (2) K
$\beta = 98.710 \ (2)^{\circ}$	Block, colourless
$V = 1827.53 (11) \text{ Å}^3$	$0.13\times0.07\times0.04~mm$
Z = 4	

Data collection

Nonius Kappa CCD diffractometer	2340 independent reflections
Radiation source: fine-focus sealed tube	1770 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.056$
T = 200(2) K	$\theta_{\text{max}} = 27.6^{\circ}$
ϕ and ω scans	$\theta_{\min} = 3.1^{\circ}$
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997)	$h = -36 \rightarrow 36$
$T_{\min} = 0.985, T_{\max} = 0.996$	$k = -6 \rightarrow 6$
17337 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Only H-atom displacement parameters refined
$wR(F^2) = 0.101$	$w = 1/[\sigma^2(F_0^2) + (0.0524P)^2 + 0.4733P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
2340 reflections	$\Delta \rho_{max} = 0.17 \text{ e } \text{\AA}^{-3}$
264 parameters	$\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
011	0.64380 (6)	0.9042 (4)	0.57076 (14)	0.0319 (4)
012	0.74938 (6)	0.6047 (4)	0.73260 (13)	0.0329 (5)
O13	0.69284 (6)	0.4286 (4)	0.82183 (13)	0.0346 (5)
O14	0.58259 (6)	0.4525 (4)	0.73050 (13)	0.0291 (4)
O16	0.52502 (6)	0.6614 (4)	0.60767 (14)	0.0339 (5)
O17	0.69720 (7)	0.5838 (4)	0.52112 (14)	0.0377 (5)
O21	0.76376 (7)	0.2029 (4)	0.80564 (14)	0.0340 (5)
O22	0.76541 (7)	0.5557 (4)	0.91262 (14)	0.0333 (5)
C10	0.74231 (10)	0.4493 (6)	0.8183 (2)	0.0321 (6)
C11	0.69259 (10)	0.8021 (6)	0.5832 (2)	0.0328 (6)
H11	0.7158	0.9421	0.5686	0.046 (2)*
C12	0.70311 (9)	0.7217 (6)	0.6967 (2)	0.0284 (6)
H12	0.6990	0.8779	0.7409	0.046 (2)*
C13	0.66896 (9)	0.5106 (6)	0.72079 (19)	0.0288 (6)
H13	0.6686	0.3638	0.6698	0.046 (2)*
C14	0.61956 (9)	0.6315 (5)	0.71191 (18)	0.0260 (6)
H14	0.6202	0.7856	0.7595	0.046 (2)*
C15	0.60867 (9)	0.7212 (6)	0.5974 (2)	0.0276 (6)
H15	0.6081	0.5646	0.5511	0.046 (2)*
C16	0.55935 (9)	0.8494 (6)	0.5802 (2)	0.0342 (7)
H161	0.5595	1.0076	0.6242	0.046 (2)*
H162	0.5506	0.9018	0.5065	0.046 (2)*
C17	0.68845 (12)	0.6421 (9)	0.4118 (2)	0.0523 (10)
H171	0.7102	0.7832	0.3967	0.046 (2)*
H172	0.6546	0.6973	0.3919	0.046 (2)*
H173	0.6946	0.4854	0.3723	0.046 (2)*
C21	0.80707 (10)	0.2023 (6)	0.8741 (2)	0.0291 (6)
C22	0.80802 (9)	0.4151 (6)	0.9392 (2)	0.0290 (6)
C23	0.84633 (10)	0.4667 (6)	1.0154 (2)	0.0345 (7)
H23	0.8465	0.6115	1.0613	0.046 (2)*
C24	0.88525 (11)	0.2911 (7)	1.0211 (2)	0.0398 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H24	0.9131	0.3189	1.0720	0.046 (2)*
C25	0.88453 (10)	0.0791 (7)	0.9552 (2)	0.0390 (7)
H25	0.9117	-0.0353	0.9621	0.046 (2)*
C26	0.84470 (10)	0.0285 (6)	0.8783 (2)	0.0355 (7)
H26	0.8439	-0.1164	0.8323	0.046 (2)*
C31	0.53608 (9)	0.5784 (6)	0.71128 (19)	0.0291 (6)
H31	0.5360	0.7326	0.7586	0.046 (2)*
C32	0.49829 (9)	0.3857 (6)	0.7332 (2)	0.0293 (6)
C33	0.50281 (11)	0.2628 (7)	0.8290 (2)	0.0398 (7)
H33	0.5299	0.3006	0.8806	0.046 (2)*
C34	0.46786 (11)	0.0846 (7)	0.8501 (2)	0.0455 (8)
H34	0.4714	-0.0005	0.9158	0.046 (2)*
C35	0.42799 (11)	0.0302 (7)	0.7761 (2)	0.0422 (8)
H35	0.4039	-0.0902	0.7909	0.046 (2)*
C36	0.42350 (11)	0.1516 (7)	0.6813 (2)	0.0471 (8)
H36	0.3962	0.1144	0.6301	0.046 (2)*
C37	0.45846 (11)	0.3288 (7)	0.6594 (2)	0.0405 (7)
H37	0.4550	0.4114	0.5933	0.046 (2)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
011	0.0248 (10)	0.0316 (10)	0.0392 (10)	-0.0017 (8)	0.0047 (8)	0.0066 (9)
012	0.0215 (9)	0.0391 (11)	0.0371 (10)	-0.0003 (9)	0.0013 (7)	0.0075 (10)
013	0.0222 (10)	0.0473 (12)	0.0329 (10)	0.0002 (9)	-0.0002 (7)	0.0123 (9)
O14	0.0204 (9)	0.0324 (10)	0.0342 (9)	-0.0039 (8)	0.0033 (7)	0.0014 (9)
O16	0.0233 (10)	0.0419 (11)	0.0354 (10)	-0.0035 (9)	0.0006 (8)	0.0060 (9)
O17	0.0357 (11)	0.0485 (13)	0.0297 (9)	0.0033 (10)	0.0076 (8)	-0.0004 (10)
O21	0.0278 (10)	0.0324 (10)	0.0394 (11)	-0.0006 (9)	-0.0028 (8)	-0.0020 (9)
O22	0.0273 (10)	0.0360 (11)	0.0349 (10)	0.0041 (9)	-0.0010 (8)	-0.0030 (9)
C10	0.0255 (15)	0.0357 (16)	0.0339 (14)	0.0003 (12)	0.0001 (11)	0.0034 (13)
C11	0.0225 (14)	0.0365 (15)	0.0390 (15)	-0.0012 (12)	0.0028 (12)	0.0055 (13)
C12	0.0202 (13)	0.0315 (14)	0.0326 (14)	0.0009 (11)	0.0012 (11)	-0.0005 (12)
C13	0.0232 (13)	0.0352 (15)	0.0275 (13)	-0.0013 (12)	0.0018 (10)	0.0017 (12)
C14	0.0217 (13)	0.0284 (14)	0.0277 (13)	-0.0020 (11)	0.0030 (10)	0.0001 (12)
C15	0.0245 (13)	0.0293 (14)	0.0285 (13)	-0.0035 (12)	0.0023 (10)	-0.0005 (11)
C16	0.0239 (14)	0.0399 (16)	0.0377 (15)	0.0004 (13)	0.0015 (12)	0.0081 (13)
C17	0.0449 (19)	0.082 (3)	0.0305 (15)	0.011 (2)	0.0081 (13)	0.0072 (18)
C21	0.0252 (14)	0.0315 (14)	0.0300 (13)	-0.0008 (12)	0.0019 (11)	0.0044 (12)
C22	0.0231 (14)	0.0337 (15)	0.0304 (13)	0.0014 (12)	0.0045 (10)	0.0057 (12)
C23	0.0346 (16)	0.0424 (16)	0.0254 (13)	-0.0034 (13)	0.0009 (11)	0.0017 (13)
C24	0.0309 (15)	0.054 (2)	0.0325 (15)	-0.0007 (15)	-0.0015 (12)	0.0132 (14)
C25	0.0270 (15)	0.0445 (18)	0.0447 (16)	0.0086 (14)	0.0027 (12)	0.0160 (15)
C26	0.0353 (16)	0.0321 (15)	0.0393 (15)	0.0017 (13)	0.0063 (12)	0.0073 (13)
C31	0.0217 (13)	0.0352 (14)	0.0298 (13)	0.0016 (12)	0.0016 (10)	-0.0019 (12)
C32	0.0227 (13)	0.0343 (15)	0.0316 (14)	-0.0002 (12)	0.0062 (11)	-0.0047 (12)
C33	0.0323 (16)	0.052 (2)	0.0356 (15)	-0.0069 (14)	0.0048 (12)	0.0023 (15)
C34	0.0438 (18)	0.054 (2)	0.0397 (16)	-0.0089 (17)	0.0107 (14)	0.0083 (16)

C35	0.0325 (16)	0.0449 (18)	0.0519 (18)	-0.0090 (15)	0.0149 (14)	0.0001 (15)
C36	0.0346 (17)	0.056 (2)	0.0487 (18)	-0.0153 (16)	-0.0012 (14)	-0.0020 (17)
C37	0.0329 (16)	0.0477 (18)	0.0393 (16)	-0.0100 (14)	0.0011 (13)	0.0036 (15)
Geometric para	meters (Å, °)					
O11—C15		1.432 (3)	C16–	-H162	0.99	0
O11—C11		1.440 (3)	C17–	-H171	0.98	0
O12—C10		1.407 (3)	C17-	-H172	0.98	0
O12—C12		1.432 (3)	C17–	–H173	0.98	0
O13—C10		1.388 (3)	C21-	-C26	1.36	7 (4)
O13—C13		1.442 (3)	C21-	-C22	1.37	6 (4)
O14—C14		1.424 (3)	C22–	-C23	1.36	7 (4)
O14—C31		1.433 (3)	C23–	-C24	1.39	9 (4)
O16—C31		1.402 (3)	C23–	-H23	0.95	0
O16—C16		1.437 (3)	C24—	-C25	1.38	0 (5)
O17—C11		1.394 (4)	C24—	-H24	0.95	0
O17—C17		1.437 (3)	C25–	-C26	1.40	0 (4)
O21—C21		1.386 (3)	C25–	-H25	0.95	0
O21—C10		1.413 (4)	C26–	-H26	0.95	0
O22—C22		1.385 (3)	C31–	-C32	1.49	9 (4)
O22—C10		1.405 (3)	C31–	-H31	1.00	0
C11—C12		1.518 (4)	C32–	-C37	1.38	2 (4)
C11—H11		1.000	C32–	-C33	1.38	4 (4)
C12—C13		1.501 (4)	C33–	-C34	1.39	0 (4)
C12—H12		1.000	C33–	–H33	0.95	0
C13—C14		1.495 (4)	C34–	-C35	1.38	2 (4)
C13—H13		1.000	C34–	-H34	0.95	0
C14—C15		1.545 (3)	C35–	-C36	1.36	9 (4)
C14—H14		1.000	C35–	-H35	0.95	0
C15—C16		1.506 (4)	C36–	-C37	1.38	9 (4)
C15—H15		1.000	C36–	-H36	0.95	0
C16—H161		0.990	C37–	–H37	0.95	0
C15-011-C11		113.7 (2)	H161		108.	5
C10-012-C12		105.5 (2)	O17–	C17H171	109.	5
C10-013-C13		105.67 (19)	O17–	C17H172	109.	5
C14-014-C31		109.77 (19)	H171	—С17—Н172	109.	5
C31—O16—C16		112.5 (2)	O17–	—С17—Н173	109.	5
C11—O17—C17		113.0 (3)	H171	—С17—Н173	109.	5
C21—O21—C10		105.6 (2)	H172	—С17—Н173	109.	5
C22—O22—C10		106.2 (2)	C26–	-C21-C22	123.	0 (2)
O13—C10—O22		109.0 (2)	C26–	-C21-O21	127.	8 (3)
O13—C10—O12		109.1 (2)	C22–	-C21-O21	109.	1 (2)
O22—C10—O12		111.9 (2)	C23–	-C22-C21	122.	6 (3)
O13—C10—O21		112.0 (2)	C23–	-C22-O22	128.	7 (3)
O22—C10—O21		107.5 (2)	C21–	-C22-O22	108.	7 (2)
O12—C10—O21		107.3 (2)	C22–	-C23-C24	115.	3 (3)
O17—C11—O11		113.1 (2)	C22–	-С23—Н23	122.	4
O17—C11—C12		109.0 (2)	C24–	-С23—Н23	122.	4

O11—C11—C12	104.3 (2)	C25—C24—C23	122.1 (3)
O17—C11—H11	110.1	C25—C24—H24	118.9
O11—C11—H11	110.1	C23—C24—H24	118.9
C12—C11—H11	110.1	C24—C25—C26	121.6 (3)
O12—C12—C13	101.4 (2)	С24—С25—Н25	119.2
O12—C12—C11	117.5 (2)	С26—С25—Н25	119.2
C13—C12—C11	111.2 (2)	C21—C26—C25	115.3 (3)
O12—C12—H12	108.8	C21—C26—H26	122.4
C13—C12—H12	108.8	C25—C26—H26	122.4
C11—C12—H12	108.8	O16—C31—O14	111.4 (2)
O13—C13—C14	118.8 (2)	O16—C31—C32	108.9 (2)
O13—C13—C12	100.36 (19)	O14—C31—C32	108.2 (2)
C14—C13—C12	106.9 (2)	O16-C31-H31	109.4
O13—C13—H13	110.1	O14—C31—H31	109.4
C14—C13—H13	110.1	C32—C31—H31	109.4
С12—С13—Н13	110.1	C37—C32—C33	118.9 (3)
O14—C14—C13	113.6 (2)	C37—C32—C31	121.2 (2)
O14—C14—C15	108.25 (19)	C33—C32—C31	119.9 (2)
C13—C14—C15	103.9 (2)	C32—C33—C34	120.3 (3)
O14—C14—H14	110.3	С32—С33—Н33	119.9
C13—C14—H14	110.3	С34—С33—Н33	119.9
C15—C14—H14	110.3	C35—C34—C33	120.4 (3)
O11—C15—C16	108.7 (2)	С35—С34—Н34	119.8
O11—C15—C14	112.67 (19)	С33—С34—Н34	119.8
C16—C15—C14	108.2 (2)	C36—C35—C34	119.4 (3)
O11-C15-H15	109.1	С36—С35—Н35	120.3
С16—С15—Н15	109.1	С34—С35—Н35	120.3
C14—C15—H15	109.1	C35—C36—C37	120.6 (3)
O16-C16-C15	107.3 (2)	С35—С36—Н36	119.7
O16—C16—H161	110.2	С37—С36—Н36	119.7
C15—C16—H161	110.2	C32—C37—C36	120.5 (3)
O16—C16—H162	110.2	С32—С37—Н37	119.8
C15—C16—H162	110.2	С36—С37—Н37	119.8
C13—O13—C10—O22	138.5 (2)	C13-C14-C15-O11	-59.3 (3)
C13-013-C10-012	16.0 (3)	O14-C14-C15-C16	59.4 (3)
C13—O13—C10—O21	-102.6 (2)	C13-C14-C15-C16	-179.5 (2)
C22—O22—C10—O13	138.2 (2)	C31-O16-C16-C15	59.3 (3)
C22—O22—C10—O12	-101.0 (3)	O11-C15-C16-O16	-179.92 (19)
C22—O22—C10—O21	16.6 (3)	C14-C15-C16-O16	-57.3 (3)
C12-O12-C10-O13	11.6 (3)	C10-O21-C21-C26	-167.6 (3)
C12—O12—C10—O22	-109.1 (2)	C10-O21-C21-C22	10.7 (3)
C12-O12-C10-O21	133.1 (2)	C26—C21—C22—C23	-1.6 (4)
C21—O21—C10—O13	-136.5 (2)	O21—C21—C22—C23	180.0 (2)
C21—O21—C10—O22	-16.8 (3)	C26—C21—C22—O22	177.9 (2)
C21-O21-C10-O12	103.8 (2)	O21—C21—C22—O22	-0.5 (3)
C17—O17—C11—O11	65.2 (3)	C10—O22—C22—C23	169.5 (3)
C17—O17—C11—C12	-179.3 (2)	C10—O22—C22—C21	-10.1 (3)
C15—O11—C11—O17	60.5 (3)	C21—C22—C23—C24	1.5 (4)
C15-011-C11-C12	-57.8 (3)	O22—C22—C23—C24	-177.9 (3)

C10-012-C12-C13	-33.0 (2)	C22—C23—C24—C25	-0.9 (4)
C10-012-C12-C11	-154.4 (2)	C23—C24—C25—C26	0.3 (4)
O17—C11—C12—O12	57.3 (3)	C22—C21—C26—C25	0.9 (4)
O11—C11—C12—O12	178.4 (2)	O21—C21—C26—C25	179.0 (3)
O17—C11—C12—C13	-58.9 (3)	C24—C25—C26—C21	-0.3 (4)
O11—C11—C12—C13	62.2 (3)	C16-016-C31-014	-61.3 (3)
C10-013-C13-C14	-151.3 (2)	C16—O16—C31—C32	179.4 (2)
C10-013-C13-C12	-35.4 (3)	C14—O14—C31—O16	61.2 (3)
O12-C12-C13-O13	41.6 (2)	C14—O14—C31—C32	-179.14 (18)
C11—C12—C13—O13	167.3 (2)	O16-C31-C32-C37	-4.4 (4)
O12-C12-C13-C14	166.13 (19)	O14—C31—C32—C37	-125.6 (3)
C11—C12—C13—C14	-68.2 (3)	O16—C31—C32—C33	176.1 (3)
C31—O14—C14—C13	-174.84 (19)	O14—C31—C32—C33	54.9 (3)
C31—O14—C14—C15	-60.0 (2)	C37—C32—C33—C34	0.3 (4)
O13-C13-C14-O14	-68.9 (3)	C31—C32—C33—C34	179.8 (3)
C12—C13—C14—O14	178.70 (19)	C32—C33—C34—C35	-0.7 (5)
O13-C13-C14-C15	173.7 (2)	C33—C34—C35—C36	0.7 (5)
C12—C13—C14—C15	61.3 (3)	C34—C35—C36—C37	-0.3 (5)
C11-O11-C15-C16	-179.5 (2)	C33—C32—C37—C36	0.2 (5)
C11-O11-C15-C14	60.6 (3)	C31—C32—C37—C36	-179.4 (3)
O14-C14-C15-O11	179.6 (2)	C35—C36—C37—C32	-0.2 (5)

Fig. 1

Fig. 2